Photocatalytic activity of TiO₂ nanoparticles prepared from dye wastewater treated sludge by using TiCl₄

Hironori Kaai , Tomoyuki Nakagawa and Hidehiro Kamiya Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan

Motoyuki Iijima

Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa 240-8501 Japan

For industrial wastewater treatment, the adsorption and precipitation methods of organic pollutants in wastewater by flocculants, such as Al₂SO₄, FeCl₃ etc., have been used extensively. Precipitated sludge produced in this process are generally incinerated or dumped in disposal facilities. However, new construction of incinerator plant and landfill facility has generally trouble because of the difficulty of neighborhood consensus formation. In this study, we focused on $TiCl_4$ as an alternative coagulant of Al₂SO₄, FeCl₃ for effluent purification. In order to prepare high performance photocatalytic TiO₂ nanoparticles from generated TiCl₄ sludge after real dye wastewater treatment, sludge were dried and heated by various temperature profiles. TiCl₄ aqueous solution was added into real dye house effluent after pH control by H_2SO_4 solution. After adsorption of organic pollutants in wastewater, the precipitation of TiCl₄ sludge with organic pollutants were accelerated by NH₃OH addition. By using above process, TiCl₄ is almost same performance as other commercial flocculants, Al₂SO₄, FeCl₃, etc. for wastewater purification. TiO₂ anatase nanoparticles were obtained by heat treatment at ranging from 973 to 1073 K, and the maximum specific surface area was 53.6 m^2/g . The photocatalytic activity of prepared TiO₂ nanoparticles from sludge was almost equivalent to that of commercial photo catalyst, P25.